

BBG-003-001617

Seat No.

[Total Marks: 70

B. Sc. (Sem. V) (CBCS) Examination

July - 2021

BSMT - 602 (A): Mathematics

(Mathematical Analysis - II & Group Theory - II) (Old Course)

Faculty Code: 003

Subject Code: 001617

Time : $2\frac{1}{2}$ Hours]

Instruction:

- 1. All questions are compulsory
- 2. Write answer of each question in your main answer sheet.
- 1. Answer the following questions in briefly

20

- (1) Define Field
- (2) Find characteristic of the ring $(z, +, \circ)$
- (3) Define Constant polynomial
- (4) Define commutative ring
- (5) Find zero divisor of the ring $(z_6, +_6, \circ_6)$
- (6) Define Kernel of a homomorphism
- (7) If polynomial $g = (0, 5, -1, 2, 0, 0, \dots)$ then find degree of g
- (8) Give an example of a ring without unity
- (9) Define Division Ring
- (10) State the first fundamental theorem of homomorphism
- (11) Define: Connected set
- (12) What is the greatest lower bound of set $\{\frac{1}{n}/n \in N\}$
- (13)Find $L(e^{3t})$
- (14) Determine whether the subset {2,5} of metric space R is compact or not
- (15) Find L(e^t t)
- (16) Find L⁻¹ $\left(\frac{1}{s-1}\right)$
- (17) Show that R is not compact set
- (18) Define compact set
- (19) Determine whether set {1,2,3,4,5} is connected or not
- (20) Find $L^{-1} \left(\frac{1}{s^2 + 25} \right)$

(1) Show that the sets A=(1,3) and B=(3,5) are separated sets of metric space R (2) Show that subset R-{1} is not connected (3) Show that every finite subset of a metric space is compact (4) Find Laplace transform of e^{2t} sin3t (5)Prove that $L[4^{5t}] = \frac{1}{s - 5log 4}$ (6) Find L⁻¹ $\left(\frac{3s+4}{s^2+16}\right)$ 9 (b) Attempt any three (1) State and prove Bolzano-Weirstrass theorem (2) Prove that every open interval of metric space R is an open set (3) If E is a closed subset of metric pace X and H is a compact subset of X Then prove that $E \cap H$ is also compact (4) If $L\{f(t)\} = \bar{f}(s)$ then prove that $L\left[\int_0^t f(u)du\right] = \frac{1}{s}\bar{f}(s)$ (5) Find Inverse Laplace transform of $\log \left(\frac{s+b}{s+a}\right)$ (6) Find Laplace transform of t² sin 4t (c) Attempt any two 10 (1) If (X, d) is a metric space and E_1 and E_2 are connected subsets of Xand $E_1 \cap E_2 \neq \emptyset$ then prove that $E_1 \cup E_2$ is also connected (2) Prove that continuous image of connected set is connected (3) State and prove theorem of nested intervals (4) Prove that L⁻¹ $\left(\frac{s}{(s^2+4)^2}\right) = \frac{t}{4} \sin 2t$ (5) Using convolution theorem, find L⁻¹ $\left\{ \frac{1}{(s^2 + a^2)^2} \right\}$ 3. (a) Attempt any three 6 (1) For element a and b of a ring R, prove that (-a)(-b) = ab

(2) If $\emptyset: (G,*) \to (G',\Delta)$ is Homomorphism. If N is a normal subgroup of G then

 $\mathbf{2}$

[Contd....

Prove that $\varphi(a^{-1}) = [\varphi(a)]^{-1}$.

BBG-003-001617]

6

2. (a) Attempt any three

- (3) Show that a cyclic group of order eight is homomorphism to a cyclic group of order four
- (4) (R,+) and (G,\times) are groups. $G = \{z \in \mathbb{C}/ |z|=1\}$ then show that mapping $\emptyset: R \to G$ is homomorphism.
- (5) f(x)=(1,-2,0,2,0,0...) and $g(x)=(1,4,0,0,3,0...) \in R[x]$ then find f(x)+g(x).
- (6) Let I be an ideal of a ring R with unity. Then prove that I = R if 1∈I

(b) Attempt any three

9

- (1) State and prove Remainder theorem
- (2) Let $\emptyset: (G,*) \to (G',\Delta)$ be a Homomorphism then prove that k_\emptyset is a normal subgroup of G
- (3) Find all homomorphism's of (Z,+) onto (Z,+).
- (4) State and prove factor theorem of polynomials
- (5) Give the example which is right ideal but not left ideal.
- (6) In R[x], $f(x) = 6x^3 + 5x^2 2x + 25$ is divided by $g(x) = 2x^2 3x + 5$ then find quotient q(x) and remainder r(x)

(c) Attempt any two

10

- (1) Prove that a Homomorphism \emptyset : $(G,*) \to (G',\Delta)$ is one-one iff $k_\emptyset = \{e\}$
- (2) State and prove first fundamental theorem of homomorphism.
- (3) Find gcd of polynomials $f(x) = X^3 + 3x^2 + 3x + 3$ and $g(x) = 4x^3 + 2x^2 + 2x + 2$ of $Z_5[x]$ and express it of the form a(x)f(x) + b(x)g(x)
- (4) State and prove division algorithm for polynomials
- (5) Prove that a commutative ring with unity is a field if it has no proper ideal